Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons.

Neuregulin 1 (NRG1) and its receptor ErbB4 are both susceptibility genes of schizophrenia. However, little is known about the underlying mechanisms of their malfunction. Although ErbB4 is enriched in GABAergic interneurons, the role of NRG1 in excitatory synapse formation in these neurons remains poorly understood. We showed that NRG1 increased both the number and size of PSD-95 puncta and the ...

متن کامل

Discrete place fields of hippocampal formation interneurons.

The spike discharge of hippocampal excitatory principal cells, also called "place cells," is highly location specific, but the discharge of local inhibitory interneurons is thought to display relatively low spatial specificity. Whereas in other brain regions, such as sensory neocortex, the activity of interneurons is often exquisitely stimulus selective and directly determines the responses of ...

متن کامل

The Specific α-Neurexin Interactor Calsyntenin-3 Promotes Excitatory and Inhibitory Synapse Development

Perturbations of cell surface synapse-organizing proteins, particularly α-neurexins, contribute to neurodevelopmental and psychiatric disorders. From an unbiased screen, we identify calsyntenin-3 (alcadein-β) as a synapse-organizing protein unique in binding and recruiting α-neurexins, but not β-neurexins. Calsyntenin-3 is present in many pyramidal neurons throughout cortex and hippocampus but ...

متن کامل

Exogenous MPP3 is Sufficient to Induce Excitatory Synapse Formation

Brain-derived neurotrophic factor (BDNF) is a secreted growth factor critical for the establishment and maintenance of central nervous system (CNS) synapses. However, the precise mechanisms that allow BDNF signaling to regulate synapse formation are unknown. Interestingly, MAGUK scaffold proteins, a family of proteins critical for organizing the molecular architecture of the synapse, have alter...

متن کامل

Control of excitatory and inhibitory synapse formation by neuroligins.

The normal function of neural networks depends on a delicate balance between excitatory and inhibitory synaptic inputs. Synapse formation is thought to be regulated by bidirectional signaling between pre- and postsynaptic cells. We demonstrate that members of the Neuroligin family promote postsynaptic differentiation in cultured rat hippocampal neurons. Down-regulation of neuroligin isoform exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The EMBO Journal

سال: 2018

ISSN: 0261-4189,1460-2075

DOI: 10.15252/embj.201798858